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We study the effect of surface roughness and coatings on fluid flow over a solid surface. 
In the limit of small-amplitude roughness and thin lubricating films we are able to 
derive asymptotically an effective slip boundary condition to replace the no-slip 
condition over the surface. When the film is absent, the result is a Navier slip condition 
in which the slip coefficient equals the average amplitude of the roughness. When a 
layer of a second fluid covers the surface and acts as a lubricating film, the slip 
coefficient contains a term which is proportional to the viscosity ratio of the two fluids 
and which depends on the dynamic interaction between the film and the fluid. Limiting 
cases are identified in which the film dynamics can be decoupled from the outer flow. 

1. Introduction 
The no-slip boundary condition on the interface between a fluid and a solid is rarely 

questioned and for a smooth surface is straightforward to apply. For a rough surface, 
where the scale of the roughness is much smaller than the scale of interest, this is in 
general a difficult condition to apply. In particular, an accurate numerical solution of 
the Navier-Stokes equations would require a very fine computational grid in the 
neighbourhood of the boundary. One means of overcoming this difficulty might be to 
replace the actual boundary by a smooth surface and hence introduce an effective-slip 
condition applied on the mean position of the interface. If a Navier slip condition were 
to emerge in which the slip velocity is proportional to the tangential stress along the 
surface, the constant of proportionality would be called the slip coefficient. 

The use of a slip boundary condition has also been important for the study of the 
motion of contact lines. It has been shown that if the no-slip condition is used when 
solving for the motion of a contact line over a solid surface, then a non-integrable rate- 
of-strain singularity is introduced at the contact line (Dussan V. & Davis 1974; also see 
Dussan V. 1979 for a review of contact line motion). One means of eliminating the non- 
integrable singularity is to introduce slip along the boundary (see Dussan V. 1979). 
Several investigators have studied the effect of roughness in the presence of contact-line 
motion (Hocking 1976; Huh & Mason 1977; Jansons 1986). There have been several 
slip models proposed (see Dussan V. 1979): ones with constant slip coefficients and 
ones where the slip coefficients depend on the thickness of the film. Dussan V. (1976) 
and Haley & Miksis (1991) found that similar macroscopic behaviour results for all of 
the local models. 

Hocking (1976) studied the effect of the roughness on flow without contact lines. He 
considered the case of flow over a rough surface where the roughness is modelled as a 
periodic modulation of the surface amplitude. He considered both the case of a single 
fluid flowing over the surface and the case of one fluid flowing over a rough surface 
where the grooves are filled with a second fluid and he derived a slip coefficient that 
includes both effects. Richardson (1971, 1973) has also considered single-phase flow 
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over a rough surface with a periodic modulation of the surface amplitude. By using 
conformal mapping techniques, he was able to relate the modulation of the surface to 
the slip coefficient. Jansons (1988) considered the related question of determining the 
macroscopic slip boundary condition for a viscous fluid flow over a rough surface over 
which there is perfect slip on the microscale. He found that a very small amount of 
roughness can induce, a no-slip boundary condition on the macroscopic scale. 

Our aim here is to reconsider the roughness problem in the limit of small amplitude 
but arbitrary-shaped roughness. Here we shall find, if the amplitude of the roughness 
is small, that the slip coefficient is equal to the average amplitude of the surface 
roughness. If a second fluid continuously coats the solid surface, then the slip 
coefficient contains additional terms which depend on the viscosity ratio of the two 
fluids and the dynamical behaviour of the thin film. In several limiting cases the 
dynamics of the film decouple from that of the outer fluid, making the concept of a slip 
boundary condition useful. 

2. Formulation 
Let the solid/liquid interface be denoted by y = h(x), and assume that the fluid is in 

the region y > h(x) with -a < x < 00, (see figure 1). We assume that the flow far 
from the surface is prescribed and that the fluid motion is governed by the 
Navier-Stokes equations. Let SZ, denote the region containing fluid i of viscosity pi and 
density pi, i = 1,2. Assume that fluid 2 coats the solid, while 0, lies above 9, with the 
boundary between them being denoted as y = k(x, t ) .  We use superscripts to denote 
variables in each of the regions and assume that SZ, is a thin region, whose thickness 
is on the same scale as the roughness. 

Let Urn denote the unit of velocity, which is determined by conditions away from the 
solid surface. Let L denote the unit of length which represents the macroscopic 
lengthscale away from the wall and on which we measure the flow field. Let L / U ,  
represent the resultant unit of time and ,ulUm/L the unit of pressure. Then in terms of 
dimensionless variables the equations of motion for the fluids in the region y > h(x) are 
the conservation of mass 

and the balance of momentum, 

for i = 1,2. Here u represents the x-component of velocity, v represents the y- 
component of velocity and p represents the pressure. We define the Reynolds number 
Re = plLUm/,ul, the density ratios b1 = 1 and 6' = p2/p1, and the viscosity ratios 
II;' = 1 and I;z = F; = p2/,u1. 

The solid surface at y = h(x) imposes impenetrability and no-slip: 

u2 = 0, v 2  = 0. (2.4) 
At infinity the velocity field approaches the externally imposed flow. We assume that 
this external-flow field is consistent with the assumption that the flow fields and their 
derivatives are bounded in the neighbourhood of the solid surface. 
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FIGURE 1. Geometry. The rough surface y = h(x), the fluid interface y = k(x, t ) ,  and the 

lengthscales. 

Along the free surface y = k(x,  t )  for i = 1,2 we have the kinematic condition 

and the continuity of tangential and normal stresses 

where the capillary number is Ca = ,u.'U,/a and CT is the surface tension. 
In order to complete the formulation of the problem, we need to specify initial values 

for all the dependent variables consistent with the no-slip boundary condition (2.4). 
The macroscopic lengthscale is L.  We assume that the surface roughness is 

characterized by a much smaller scale d (parallel to the x-axis) and that 

e = d / L <  1 .  (2.8) 
Our aim is to derive an effective boundary condition in the limit of E tending to zero. 

Hocking (1976) considered a specific h period in x .  Here we let h have a general shape 
but necessarily small amplitude, 

(2.9) y = h(x) = EL(~,x), 

where the fast space variable is defined by 

i = X / E .  (2.10) 

Hence the roughness varies on two scales: the slow scale x and the fast scale i over 
which the amplitude of oscillation is of order E .  If the roughness were i-periodic, then 
E would represent its wavelength. 

The methods of matched asymptotic expansions and multiple scales will be used 
here to derive the effective-slip boundary condition. The idea is to use the method of 
matched asymptotics to match the flow field away from the wall with the flow field in 
the neighbourhood of the wall and then to average out the i-scale from the results. 

5-2 
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Hence, we assume that all variables depend on the fast scale .2 and the two slow scales 
x and y ,  e.g. u = u(f, x, y) .  This requires that we replace the x-derivatives in (2.1)-(2.7) 
bv 

a a l a  
ax ax €ax 

1 aui aui ad 
E a i  ax ay 

- = -+-,. 
Hence (2.1) becomes 

--+-+-=o. 

(2.11) 

(2.12) 

Equations (2.2)-(2.7) are transformed in a similar manner. The average ( f )  of a 
variable f = f(f, x, y ,  t )  is defined as 

(f) (x? y ,  t )  = lim - f la, x, y ,  t )  df .  (2.13) 
Wm2W Z k W  

We assume that all such averages are bounded. 

3. Asymptotic solution and the slip boundary condition 
We introduce relation (2.11) and apply the method of matched asymptotic 

expansions to (2.1k(2.3) along with the boundary conditions (2.4k(2.7). There are two 
regions to consider : the outer region, where y is order one, and the inner region, where 
y is order E .  

Outer region. We assume that the interface y = k(x, t )  is located in the inner region; 
hence Q2 is a thin film which coats the solid interface. The outer region contains only 
fluid 1. Look for a solution of (2.1k(2.3) in the form of a regular perturbation series 
in e, for example for u1 we have 

If we use expansion (3.1) and equate to zero coefficients of like powers of e, we find that 
the leading-order terms in E' satisfy the Navier-Stokes equations (2.1)-(2.3) while the 
corrections are found by substituting expressions like (3.1) into (2.1)-(2.3) and 
collecting powers of e .  In order for the solution to have a bounded average, no term 
in the outer expansion can depend on f at any order of E ,  This result implies that the 
matching condition from the inner region to the outer region cannot depend on the fast 
scale f. 

u1 = Mi(?, x, y )  + EM@, x, y )  + €2u;(f, x, y )  -t ... . (3.1) 

Inner region, local to the solid surface. We introduce the inner scaling 

ui = €tii, y i  = &, h = ~ p ,  y = €9, pi = y, k = &. (3.2) 
Using expansion (2.11) and scaling (3.2) in (2.1)-(2.6) we find that in the region 
h < j j  < 00 the following equations must hold: 
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for i = 1,2.  We note that, if there were no 2-dependence in (3.3)-(3.5) and s+O, then 
these would be the lubrication equations governing the liquid film. 

In addition we have from (2.4) that the boundary conditions 

$2 = 6 2  = 0 

must hold on 9 = k(2 ,x) .  Finally, the boundary conditions (2.5)-(2.7) along the 
interface 

(3.6) 

= k(x, i, t )  are 

(3 * 7) 
ak - 
- + zii(k, + €i,) - Oi = 0, 
at 

where we have defined the scaled capillary number, & = sCa. Solutions of system 
(3.3)-(3.9) are found as a regular perturbation series in E ,  e.g. 

ti = ti"2, x, 9)  + E t i y a ,  x, p) + € 2 t i 2 ( 2 ,  x, 9) + . . . . (3.10) 

We substitute expansion (3.10) into (3.3)-(3.5) and equate to zero coefficients of like 
powers of E. At leading order we find that ti,, 6, andi ,  satisfy the Stokes equations, i.e. 

(3.11) 

(3.12) 

(3.13) 

If (3.1 lF(3.13) were independent of 2, for example if no roughness were present, then 
it would represent the lubrication equations. The equations for the higher-order terms 
as well as the leading-order boundary conditions can be found in a similar manner. 

This problem is as difficult to solve as the original one except for the fact that the 
roughness is of unit order in the inner region. 

Suppose we average (3.1 lk(3.13).  Assume that we can interchange the ?-derivative 
with the average, that the dependent variables are bounded for all 2, and that j > f for 
all x and 2, i.e. the lines j is constant are completely in Q,. We then find that both (6:) 
and @:) are independent of j while (ti:) is a linear function of 9, 

(ti:) (x, 9,  t )  = a(x, t )  + b(x, t )  9. (3.14) 

Here u and b are two functions of which must be determined by the solution of the 
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inner problem and matching. To leading order the matching condition from the outer 
region to the inner region is given by 

ut(x, 0, t )  = ui(x, 0, t )  = 0. (3.15) 

Hence the leading-order outer solution can be completely determined. This requires 
that the Navier-Stokes equations along a planar no-slip boundary be solved for ui, v: 
and p i .  Initial conditions plus boundary conditions at infinity must be specified. We 
assume that the conditions on the outer flow are such that spatial derivatives of the 
dependent variables are finite along y = 0, for example, u: has a regular Taylor series 
expansion about y = 0. Suppose that the conditions are such that the outer flow is a 
steady linear shearing flow, then ui = y ,  0: = 0 and po = constant are the solutions 
which match to the shearing flow u1 = y and ul = 0 far from the boundary. 

Continuing with the matching, we find that in general the leading-order inner 
solution must match to a linear shearing flow at infinity. Hence we find that 
b(x, t )  = (au;/i3y)(x,O7 t )  and we rewrite (3.14) as 

au; 
(@ ( x ,  9, t )  = - Qx, t)]  - (x, 0, t). 

aY 
(3.16) 

Here we have introduced the function e(x, t )  defined by a(x, t )  = - 6 ( x ,  y )  (au:/ 
ay) ( x ,  0, t). It depends on the amplitude of the roughness h (2, x, t )  and the shear at 
infinity. The next-order matching condition for the outer solution could be found by 
using (3.16) since the outer solution cannot depend on 2 It is 

aul 

aY 
ui(x, 0, t )  = - QX, t )  2 (x, 0, t). (3.17) 

If we multiply (3.17) by 8 and add (3.15) at y = 0, we find that to order 6 the outer flow 
satisfies the effective boundary condition along y = 0, 

au  

aY 
m(x, 0, t )  + C(x, t )  - (x, 0, r )  = 0, (3.18) 

where C(x, t )  = d ( x ,  t). This is a Navier slip condition with a slip coefficient C(x, t). 
Hence to order 6, in the outer region we must solve the Navier-Stokes equations 
(2.1F(2.3) with the Navier slip condition (3.18). In addition, as we shall show, the flux 
boundary condition is v(x,  0, t )  = 0 to order E .  At this point we only know that v = 0 
to leading order; see (3.15). Our aim in the following is to determine C(x, t )  in the limit 
of small-amplitude roughness. 

4. Inner solution 
In order to solve (3.1 lF(3.13) we assume that the amplitude of the roughness is small 

in the inner region. This requires the introduction of a second small parameter S and 
we set h = &(a, x), where h is assumed to be order one. Our final result will be valid 
to order €8, hence we need that 

E < S < l .  (4.1) 

For a smaller 6 we would need to consider additional terms in the €-expansion. 
Now apply the method of matched asymptotic expansions once again in order to 

solve the inner problem (3.1 lF(3.13). We need to again consider two regions: the first 
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is where 9 is of unit order - call this region I ;  and the second is where f is of order 
6-call this region 11. In region I we seek a solution in the form of a regular 
perturbation series in 6, 

I zi: = o0<a, x, p, t )  + sfi1,<a, x, p, t )  + 62O2(i., x, p, t )  + . . .) 
fit = vJa, x, p, t )  + sv;<a, x, p, t )  + s2 v2<a, x, I;, t )  + . . . , 
@: = &a, X , j ,  t )  + 6Fl(i, x, p, t )  + &2F2(3, x, p, t )  + . . . . 

We substitute expansions (4.2) into (3.1 1H3.13) and find that at each order the Stokes 
equations result. 

We wish to consider two limits of the solution in region 11. The first applies where 
there is no coating fluid. The second applies when the coating fluid exists. 

4.1. Single-phase flow over a rough surface 
For this case there is no coating fluid and so there is no region l2, and no interface. The 
velocity components 12: and fii satisfy the no-slip condition along the solid surface 
J;  = h. 

We rescale the variables in region I1 as 

I2; = &is', fi; = 62i71, 3; =PI, p = 67, h = &, (4.3) 

Q1 = ii:(a, x, F, t )  + 6u@, x, 7, t )  + s";(a, x, ', t )  + . . . . 
and again we seek a solution as a power series in 6, e.g. 

(4.4) 

By substituting (4.3)-(4.4) into (3.1 943.13) we find that the leading-order equations 
are 

These equations are to be solved with the no-slip boundary conditions, which at 
leading order in 6, are 

along p = E(2, x). The solution of (4.5)-(4.8) is 

ii: = 0, i$ = 0 (4.8) 

ii: = ('-E) K. (4.9) 

(4.10) 

= pica, x, t). (4.11) 

Here the unknown function of integration K = K(2, x, t )  will be determined by 
matching. Higher-order terms are determined in a similar manner. 
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We wish to match the solutions in region I and 11. Hence, we rewrite the solution in 
region I in terms of the variable p = 89 and expand the dependent variables about 
j = 0. We find that the matching conditions along 9 = 0 are 

1 

o,,(i,~,O, f) = 0, o1(2,x,O, f) = -hK, %(&x,O, t )  = K, 
aY 

and also along 9 = 0 we find for 6; that 

(4.12) 

(4.13) 

This immediately gives that the leading-order solution in region I is a linear shearing 
flow 

A v, = 0. (4.14) 

The leading-order pressure Po is independent of i and 9 and equals the outer pressure, 
Po = p:. From (4.12) we find that K is equal to du:/ay at y = 0. We also note from 
relation (4.10) that the quadratic term in the inner velocity v i  drops out. 

Now the next-order matching condition for the velocity 0, from (4.12) is that 
Cl(i, x, 0, t) = - A ( i ,  x) (i3u;,@y) (x, 0, t). Since the leading-order term C0 matches to the 
linear-shear velocity as 9 tends to infinity, we now require that 0, be bounded as 9 
tends to infinity. Hence, the solution of the order4 problem away from the wall must 
satisfy these boundary conditions plus the Stokes equations. This is a difficult problem 
but as noted above we only need to have the average behaviour of fil. Therefore, if we 
average the system as discussed earlier, we find that ( G1) is linear in 9. In order to 
satisfy the above boundary conditions we find that 

- au; 

aY 
(C1) = -(A)-(x,O, t ) ,  ( v ; )  = o .  (4.15) 

This result, along with (3.16), (4.2) and (4.14), implies that the slip coefficient is 

C(X) = <A>, (4.16) 

and the effective boundary condition along y = 0, to order €8, for flow over a rough 
surface is 

au 

aY 
u(x, 0, t) + (h) - (x, 0, t) = 0. (4.17) 

Further, from (4.15) we validate the remark made at the end of $3 that the flux 
boundary condition is v = 0 at y = 0 to order €8. Note that order-d2 terms have been 
used in the matching, but results accurate to order €8 are used in the slip condition 
(4.17) and the boundary condition on v. Hence here, as well as in 94.2, condition (4.1) 
is sufficient to give order-€8 accuracy of the effective boundary conditions. 

The position of the origin of the coordinate system relative to the modulation of the 
solid surface will affect the predicted slip coefficient. For example, if we simply put the 
origin at the location where ( h )  = 0, then to order €8 the slip coefficient is zero. 
Hocking (1976) assumed that the surface y = h is located below y = 0 with the effective 
plane coinciding with the maximum of h. Under this assumption, (4.17) reproduces 
Hocking’s result for a small-amplitude periodic modulation. 
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The dependence of the slip coefficient on the location of the origin of the coordinate 
system reflects the fact that the solution of a flow problem should depend on the size 
of the domain, and if the roughness has a small amplitude, then the slip coefficient can 
be varied by the position of the coordinate plane within this order-€& region. In any real 
problem, the location of the origin and the size of the domain is fixed first, and then 
the amplitude of the roughness is measured relative to the origin chosen. 

In the next section, following Hocking (1976), we shall consider that the solid surface 
is coated by a second fluid. Here we shall find that slip coefficient depends on the 
material properties of the second fluid and this contribution can dominate the 
dependence on the average roughness. 

4.2. Two-phase flow over a rough surface 
There is now a coating fluid along the solid surface. In order to solve the inner problem 
we again assume that the amplitude of the surface roughness in the inner region is of 
order & and that the thickness of region SZ, is also of order 8. Hence, in region I1 we 
need to rescale the variables as 

c; = &d, 6; = piji , = 8-18, j = 87, ji= &h, /$= &k (4.18) 

for i = 1,2, and again seek a solution as a power series in 6 ;  see (4.4). Note that we have 
increased the pressure scale in order to allow for the possibility of large surface tension. 
Note also that a new timescale has been implicitly introduced into this problem as a 
result of the new scales (4.18), defined by T = at. Hence our problem now has two 
timescales: t ,  the (fast) time over which the macroscopic flow is being driven far away 
from the solid surface; and T, the slow timescale over which phenomena local to the 
wall are adjusting to the forcing of the flow field far from the solid surface. Hence, 
analogous to the separation of the two space scales, x and 2, we now look for all 
dependent variables as a function of both t and T and replace the t-derivatives in the 
equations of motion by 

a a  a 
at  at  aT' 
-=-+&- (4.19) 

This substitution (4.19) is made into the evolution equations and boundary conditions 
(2.lt(2.7). We also assume that the macroscopic forcing in the problem contains both 
of these timescales. Hence the leading-order outer problem in 6 will depend on both t 
and T, for example ui = ui(x,y ,  T, t). 

We substitute (4.18), (4.19) and (4.4) into (3.11)-(3.13) and find that the leading- 
order equations in region I1 are 

(4.20) 

(4.21) 

(4.22) 

for i = 1,2. These equations are to be solved with the no-slip boundary conditions 
along 7 = @a, x), 

@ = O ,  g=o. (4.23) 
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Along the interface p = E,(f, x, t )  the leading-order boundary conditions from 
(3.7k(3.9) are 

ak, 
at 
- _  - 0, (4.24) 

(4.25) 

(4.26) 

for i = 1,2. Here we have defined the scaled capillary number 
that it is order one. In addition we have continuity of velocity across y = ko, 

= eCa/# and assume 

(4.27) 

Note that the scaling has given us a system of equations similar to the lubrication limit 
for thin film flow over a rough surface. The difference occurs only in the kinematic 
condition along the interface which will now have an additional time dependence. 

- 1 - 4  - 1 - 4  uo - u,, v ,  - D o .  

Note that the next-order kinematic condition along p = k,(R, x, T, t )  is 

(4.28) 

As for the case of the two space scales, we require that the average over the fast 
timescale t of all variables is bounded in time. The averagefofflf, x, y ,  T, t )  is defined 
as 

f(f, x,y, T )  = lim - f(R, x,y,  T, f)dt. (4.29) 

The matching condition on the pressure requires that pi = 0. Hence the leading- 
order effect on the pressure in Q2 is due only to the effect of capillarity. From 
(4.20)-(4.21) we then find that the leading-order velocities are given by 

iit = AP+ B, (4.30) 

(4.3 1) 

where the functions A(& x, T, t), B(2, x ,  T, t )  and D(R, x ,  T, t )  are yet to be determined. 
In 9 3  we noted that the ti:-velocity must match to a linear shearing flow at infinity. 
Hence fi, matches to the same shearing velocity at infinity, $(aui/ay) (x, 0, T, t) .  
Therefore, for the velocity from region I1 to match to the velocity in region I and satisfy 
the above matching conditions we need that A = (aui/i3y) (x, 0, T, t ) ;  hence A is 
independent o f f  and the presence of the boundary will affect only the coefficient B. 
Following a similar calculation as done in 93, we are able to relate the average of B to 
the slip coefficient. 

We integrate (4.20)-(4.22) and use the boundary conditions (4.23) to find that in Q, 

W + a ,  blow 

- 
V: = - i A j P - B j p - D ,  

(4.32) 

(4.33) 
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where the unknown functions q(3, x ,  t )  and K(3, x ,  t )  are determined by the boundary 
and matching conditions. Using (4.30) and (4.32) in (4.25), we find that 
K = (Ap- q&)/,z. The unknown function q can be related to k, using (4.26) to find that 
q = - k,,,/Ca. 

The kinematic condition determines the interface position p = k,. First, from (4.24) 
we find that k, is independent of the fast timescale t. Hence using the above results 
along with (4.32) and (4.33), we find from (4.28) that 

- 

- ak, at = - { ~ + - ! = = ~ [ k o , , ~ ( k o - h ) 3 ] + - ~ [ A ( k , - h )  aT 3pCaax 2p  ax a - - .} ] . (4.35) 

where, as noted above, A = (aui/ay) (x ,  0,  T ,  t). In order for a solution of (4.35) to exist, 
we need to require that the time average of the right-hand side be bounded. We find 
that a solution exists only if E, satisfies the equation 

(4.36) 

Hence, the leading-order dynamics of the interface is governed by the evolution 
equation (4.36) and changes to k, occur on the slow timescale T. Note that the 
dynamics depends on the coupling to the macroscopic flow field through the term A” 
which represents the shear stress that the outer fluid exerts on the interface. Only 
if there were a slow external forcing of the macroscopic flow would this term depend 
on T. 

Suppose that we average (4.36) over the 3-scale. Interchanging the T-derivative with 
the average implies that (k,) depends only on x ,  i.e. the leading-order average 
thickness of the film is constant in time (conservation of mass on the microscopic 
scale). Hence although there can be a local rearrangement of the fluid in the film, as 
given by (4.36), the average film thickness does not change in time at leading order in 
this small-scale roughness limit. It can be expected that over a very long timescale this 
would not be the case and hence our asymptotic expansion would break down; 
corrections to the theory would then be needed. 

The function B can now be determined by using (4.30) and (4.32) in (4.27), 

B ( i , X , T , t )  =-Ah+A(E,-h)  (4.37) 

The problem in region I can be solved by matching Go to ti;, as given by (4.30), and 
Po to zero at 9 = 0. The problem reduces to the solution of the Stokes equations with 
these conditions at 9 = 0 and a linear shearing flow at infinity. This is a difficult 
problem but as noted in 54.1 we need only solve for the average values of the 
unknowns. This allows us to determine the scaled slip coefficient C(x, T, t )  = C/& as 

C(X, T ,  t )  = (h)  - (4.38) 

where we have defined the average film thickness B(x)  = (k,-h). Hence, the average 
depth does not depend on the time. The dependence on the fast time tenters (4.38) only 
in the third term with the factor A .  The unscaled slip coefficient C(x, t )  (in outer units) 
can be written as follows: 

C ( x , T , t )  = ( h ) -  t1 q - l  ) D(x)--$-((k-h)ag),  2,u ACa (4.39) 
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where D(x) = ( k - h )  and k: represents the leading-order contribution to the interface 
height. 

Note that A can be replaced by au/ay in (4.39) and C will retain the same order of 
accuracy. The substitution shows explicitly how the outer flow can couple to the 
microscopic flow field but it does not, in general, aid in the calculation of the slip 
coefficient since the microscopic flow is required in order to calculate the averages in 
(4.39). In the next section we shall discuss certain limiting cases where the calculation 
of the slip coefficient decouples from the macroscopic flow field. 

Note that in the derivation of the slip coefficient, A has been assumed to be non-zero. 
If A were zero, the derivation would break down locally since the outer flow would be 
separating, au/ay = 0 at y = 0. 

5. The slip coefficient 
In order to better understand the behaviour of the slip coefficient, we consider in this 

section some special limits of (4.38) or (4.39). Note that if there were no coating film, 
i.e. k = h and p1 = ,u2, then (4.39) would reproduce (4.16), the slip coefficient for the 
single-phase problem. 

equals Ca times the ratio €/a2. This later ratio of dimensionless 
parameters can be either large or small depending on the relation of 6 to e. Hence, the 
geometry, as well as the physical parameters (e.g. surface tension) of the fluids, 
determine the magnitude of the scaled capillary number z. 
Large capillary number, ?% 

term in form (4.38) and the slip coefficient is given by 

Recall that 

Suppose that the capillary number is large, % 1. Then we can neglect the third 

Hence, C is independent of time. If surface roughness were absent or if ,L1/,ii2 % 1, the 
slip coefficient would be proportional to the mean thickness of the coating film. Note 
that the slip coefficient is straightforward to calculate in this large-capillary-number 
limit and is given by the initial data. Although in the general unsteady case, the 
dynamics of the interface is coupled to the macroscopic flow problem by the slip 
coefficient, when 

Small capillary number, 
< 1. This could represent the iarge- 

surface-tension limit or just a small E / P  ratio. If we were to look for a solution of the 
leading-order equations as a regular perturbation expansion in z, then from (4.36) the 
leading-order term of the expansion must have either k,,,, = 0 or ko = h. Suppose we 
assume that there is sufficient fluid in the film such that the latter option is not possible 
(i.e. the volume in the thin film per unit length is of unit order) so that we must have 
ko = &(x), a function independent of 2 and T at leading order in ?%. In order to 
determine C one must continue to next order in Ca and obtain 

9 1 only the mean thickness of the thin film enters. 

Suppose that the capillary number is small, 

'l '[ ( )2('>1], (5.2) 
D ( x , T ) + T -  ( k - h ) -  ~ 

3P A k - h  

where k = k(x)  to leading order in (here we replace 15, by k).  Note that if h varies 
only on the long scale x, then (5.2) reduces to (5.1). Also note that if the external flow 
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does not depend on t ,  then A does not appear in (5.2) and the slip coefficient is given 
explicitly in terms of the surface roughness and the initial (constant on the 2-scale) film 
thickness. 

Small film viscosity, p < 1 
Another interesting limit is where p = ,u2/,u1 6 1, i.e. the coating fluid is much less 

viscous that the fluid far from the solid surface as would be the case if a layer of gas 
were trapped below a liquid. Here we find that to leading order in p, the slip coefficient 
is independent of the mean surface roughness amplitude. We see that the leading-order 
behaviour of the interface is now determined by setting the left-hand side of (4.36) to 
zero. Hence ko is determined by solving an ordinary differential equation, the quasi- 
steady form of (4.36). After one integration we find that 

- 2 - _ _  
A = -= (k ,  - h) koeee + L(x, T )  (k, - h)-2, 

3 Ca (5.3) 

where the function L(x, T )  is chosen to ensure mass conservation and the boundness 
of the 2-average of k. Hence, at leading-order, the interface is constant in time, and is 
given by the initial conditions unless A and the leading-order macroscopic flow field 
varies on the T timescale. If a is also large, then as noted above, the slip coefficient 
would depend only on the product of the viscosity ratio with the mean film thickness. 

Large film viscosity, F % I 
Suppose we consider the limit where p = ,uu2/,u1 % 1, i.e. the coating fluid is much 

more viscous than the fluid in Q,. Again from (4.36) we find that at leading-order, go 
is independent of T. From (5.1) we see that in the large-viscosity-ratio limit, p B 1, the 
leading-order slip coefficient is C = (ko) .  Hence the slip coefficient is known explicitly 
in terms of the initial data. The coating fluid acts as a solid in this limit and the leading- 
order value of the slip coefficient just corrects from the error resulting from applying 
the no-slip boundary condition at the bottom of the coating film. This calculation is 
valid over the timescale T, but for larger times one would need to introduce an 
additional timescale T/F into the problem in order to avoid secular terms in time in the 
expansion of k,. 

Smooth surface, ( h )  = 0 
Finally note that (4.38) also holds in the case of a smooth surface, ( h )  = 0, with a 

coating fluid. In this limit only the last two terms of (4.38) are non-zero. Hence, as 
noted above, in the limit where ,u1/,u2 % 1, we find that the slip coefficient depends only 
on the product of the viscosity ratio and the mean thickness of the coating film. 

6. Conclusions 
Our aim in this paper is to systematically derive an effective boundary condition 

for flow over a rough or coated surface. For a single-phase flow the result is a Navier 
slip condition and the slip coefficient (4.16) is equal to the average amplitude of the 
roughness, ( h ) .  As noted in $4, the actual numerical value of this will depend on the 
origin of the coordinate system. In the two-phase flow case the slip coefficient is given 
by (4.38). Hence, the solution of the Navier-Stokes equations for flow over a coated, 
rough surface (figure l), can be replaced by the solution of a single-phase flow over a 
smooth surface (figure 2a) when slip over the surface is governed by a Navier slip 
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7 = h(P, x) 

Effective slip 

y16d 

xI6d 

yl6d 

FIGURE 2. Macroscopic model of flow over a coated rough surface as the sum of the flow of a single- 
phase fluid over a rough surface plus the flow over a horizontal steady fluidlfluid interface plus the 
flow over a dynamic fluid/fluid interface. (a) Slip on the macroscopic scale. The rough surface appears 
planar. (b) Microscopic (inner) single-phase flow over a rough no-slip surface, y = &(a, x). (c )  
Microscopic (inner) flow of two fluids over a smooth surface. The interface between the two fluids 
is planar. (d) Microscopic (inner) flow of two fluids over a smooth surface with a dynamic interface, 
y = &$a, X, t ,  T ) .  

condition. From (4.38) we see that the slip coefficient is composed of three terms (see 
figure 2). The first is due to the surface roughness that arises from single-phase flow 
over a rough surface (figure 2b).  The second is proportional to the average thickness 
of the film and arises from a steady shear flow over a constant-thickness lubricating 
film lying on a smooth surface (figure 2c).  The third depends on the dynamics of the 
interface and this dependence is found to be inversely proportional to the capillary 
number (figure 2d) .  

By using the method of matched asymptotic expansions and the method of multiple 
scales we are able to define explicitly the slip coefficient. The effective boundary 
conditions are derived in the limit of e tending to zero but we needed to assume that 
the amplitude of the roughness is order €6. 

How does one solve a problem with this slip coefficient? Although the slip coefficient 
is given explicitly by (4.39), it appears that in general a sequence of macroscopic (outer) 
and microscopic (inner) problems must be solved in order to obtain a macroscopic- 
flow problem that includes the presence of surface roughness and a coating film. One 
would first solve the Navier-Stokes equations for flow over a no-slip smooth 
boundary; this identifies the coefficient A .  Equation (4.36) then needs to be solved on 
the microscopic scale for k, with the result substituted into (5.1) and averaged. This 
determines the slip coefficient and identifies another macroscopic-flow problem over a 
smooth surface, i.e. the linearized (about the leading-order outer problem) Navier- 
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Stokes equations for the first correction to the macroscopic-flow field with the 
effect of the surface roughness and a coating film entering the problem through 
boundary condition (3.17). Note that although the slip coefficient is used here, the 
Navier slip condition is not necessary because two macroscopic (outer) problems are 
solved. So although we have simplified the macroscopic problem, which includes the 
effects of the roughness and a coating film, we are not permitted to use a Navier slip 
condition (3.18) which would allow us to solve a single macroscopic problem. The 
identification of the slip coefficient and the replacement of the no-slip boundary 
condition by a Navier slip condition (3.18) are useful when the slip coefficient 
decouples (or couples explicitly) from the leading-order macroscopic (outer) problem. 
In $ 5  we found several limits of the parameters where this is possible because the slip 
coefficient is explicitly known in terms of the initial conditions or else it could easily be 
determined from them. In particular this is true for single-phase flow over a rough 
surface where the slip coefficient equals the mean surface amplitude modulation. But 
when a coating fluid is present, this uncoupling can only be done in certain limiting 
cases. 
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88ER13927 for M. J.M. and DE-FG02-86ER13641 for S.H.D. 

R E F E R E N C E S  

DUSSAN V., E. B. 1976 The moving contact line: the slip boundary condition. J .  Fluid Mech. 77, 
665-684. 

DUSSAN V., E. B. 1979 On the spreading of liquids on solid surfaces: Static and dynamic contact 
lines. Ann. Rev. Fluid Mech. 11, 371-400. 

DUSSAN V., E. B. & DAVIS, S. H. 1974 On the motion of a fluid-fluid interface along a solid surface. 
J .  Fluid Mech. 65, 71-95. 

HALEY, P. J. & MIKSIS, M. J. 1991 The effect of the contact line on droplet spreading. J .  Fluid 
Mech. 223, 57-81. 

HOCKING, L. M. 1976 A moving fluid on a rough surface. J .  Fluid Mech. 76, 801-817. 
HUH, C. & MASON, S. G. 1977 Effects of surface roughness on wetting (theoretical). J .  Colloid 

Interface Sci. 60, 11-38. 
JANSONS, K. M. 1986 Moving contact lines at non-zero capillary number. J .  Fluid Mech. 167, 

393407. 
JANSONS, K. M. 1988 Determination of the macroscopic (partial) slip boundary conditions for a 

viscous flow over a randomly rough surface with a perfect slip microscopic boundary condition. 
Phys. Fluids 31, 15-17. 

RICHARDSON, S. 1971 A model for the boundary condition of a porous material. Part 2.  J .  Fluid 
Mech. 49, 327-336. 

RICHARDSON, S. 1973 On the no-slip boundary condition. J.  Fluid Mech. 59, 707-719. 


